1		mark		sub
(i)	$t=2.5 \Rightarrow \mathbf{v}=\binom{-5}{10}+2.5\binom{6}{-8}=\binom{10}{-10}$ speed is $\sqrt{10^{2}+10^{2}}=14.14 \ldots$ so $14.1 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s. f.)	B1 E1 F1	Need not be in vector form Accept diag and/or correct derivation of just $\pm 45^{\circ}$ FT their v	
(ii)	$\begin{aligned} & \mathbf{s}=2.5\binom{-5}{10}+\frac{1}{2} \times 2.5^{2} \times\binom{ 6}{-8} \\ & =\binom{6.25}{0} \\ & \text { so } 090^{\circ} \end{aligned}$	M1 A1 A1 A1	Consideration of \mathbf{s} (const accn or integration) Correct sub into uvast with \mathbf{u} and \mathbf{a}. (If integration used it must be correct but allow no arb constant) cao. CWO.	4
				7

2		mark		Sub
(i)	$9 \mathbf{i m ~ s}{ }^{-2} ;(9 \mathbf{i}-12 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$	B1	Award for either. Accept no units. (isw e.g. finding magnitudes)	
(ii)	2L $\mathbf{F}=4(9 \mathbf{i}-12 \mathbf{j})=(36 \mathbf{i}-48 \mathbf{j}) \mathrm{N}$	B1	Accept factored form. isw. FT a(3). Accept 60 N or their $4\|a\|$	
$\begin{aligned} & \text { (iii } \\ &) \end{aligned}$	$\mathbf{v}=\int\binom{9}{-4 t} \mathrm{~d} t=\binom{9 t+C}{-2 t^{2}+D}$ Using $\mathbf{v}=4 \mathbf{i}+2 \mathbf{j}$ when $t=1$ $\begin{aligned} & \binom{4}{2}=\binom{9+C}{-2+D} \\ & \Rightarrow C=-5, D=4 \text { so } \mathbf{v}=(9 t-5) \mathbf{i}+ \\ & \left(4-2 t^{2}\right) \mathbf{j} \end{aligned}$	M1 A1 M1 A1	Integration. At least one term correct. Neglect arbitrary constant(s) Sub at $t=1$ to find arb const(s) y form	4
				6

$\mathbf{3}$		mark		
(i)	Differentiate $\mathbf{v}=2 t \mathbf{i}+(5-4 t) \mathbf{j}$ Differentiate $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}$	M1 A1	At least 1 cpt correct Award for RHS seen M1 F1	Do not award if \mathbf{i} and \mathbf{j} lost in $\mathbf{v .}$ At least 1 cpt correct. FT FT from their 2 component \mathbf{v}
(ii)	$\mathbf{F}+12 \mathbf{j}=4(2 \mathbf{i}-4 \mathbf{j})$	M1	N2L. Allow $\mathbf{F}=m g$ $\mathbf{a .}$ No extra forces. Allow 12 \mathbf{j} omitted Allow wrong signs otherwise correct with their vector $\mathbf{a .}$	

4		mark	notes
(i)	$\begin{aligned} & \frac{-20}{2}=-10 \\ & -10 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1 A1 2	Use of a suitable triangle to attempt at $\Delta v / \Delta t$ for suitable interval. Accept wrong sign. cao. Allow both marks if correct answer seen.
(ii) (A)	Signed area under graph $\frac{1}{2} \times 2 \times 20=20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using the relevant area or other complete method
(B)	either using areas Signed area $2 \leq t \leq 5$ is $\frac{1}{2} \times((5-2)+(4.5-2.4)) \times(-4)=-10.2$ Signed area $5 \leq t \leq 6$ is $\frac{1}{2} \times 1 \times 8=4$ Total displacement is 13.8 m	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow + 10.2. cao but FT from their 20 in part (A)
	or using suvat From $t=0$ to $t=2.4$: 19.2 From $t=4.5$ to $t=6: 3.0$ From $t=2.4$ to $t=4.5:-8.4$ Total : 13.8	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Both required and both must be correct.
		5	
(iii)	$\begin{aligned} & a=4 t-14 \\ & a(0.5)=-12 \text { so }-12 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1 A1 A1 3	Differentiate. Do not award for division by t.
(iv)	Model A gives - $4 \mathrm{~m} \mathrm{~s}^{-1}$ For model B we need v when $a=0$ $v\left(\frac{7}{2}\right)=-4.5$ so model B is $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ less	B1 M1 A1 F1 4	May be implied by other working Using (iii) or an argument based on symmetry or sketch graph that $a=0$ when $t=3.5$ Accept values without more or less

PhysicsAndMathsTutor.com

